Unit Mixed Interval Graphs

Alan Shuchat
Department of Mathematics
Wellesley College
Wellesley, MA 02481 USA

Ann N. Trenk Department of Mathematics Wellesley College Wellesley, MA 02481 USA Randy Shull
Department of Computer Science
Wellesley College
Wellesley, MA 02481 USA

Lee C. West
Department of Mathematics
Wellesley College
Wellesley, MA 02481 USA

May 7, 2014

ABSTRACT

In this paper we extend the work of Rautenbach and Szwarcfiter [8] by giving a structural characterization of graphs that can be represented by the intersection of unit intervals that may or may not contain their endpoints. A characterization was proved independently by Joos in [6], however our approach provides an algorithm that produces such a representation, as well as a forbidden graph characterization.

1 Introduction

Interval graphs are important because they can be used to model problems in the real world, have elegant characterization theorems, and efficient recognition algorithms. In addition, some graph problems that are known to be difficult in general, such as finding the chromatic number, can be solved efficiently when restricted to the class of interval graphs (see for example, [4, 5]).

A graph G is an *interval graph* if each vertex can be assigned an interval on the real line so that two vertices are adjacent in G precisely when the intervals intersect. In some situations, all the intervals will have the same length and such a graph is called a *unit interval graph*. The unit interval graphs are characterized in [9] as those interval graphs with no induced claw $K_{1,3}$.

Many papers about interval graphs do not specify whether the assigned intervals are open or closed, and indeed the class of interval graphs is the same whether open or closed intervals are used. The same is true for the class of unit interval graphs. Rautenbach and Szwarcfiter [8] consider the class of graphs that arise when both open and closed intervals are permitted in the same representation. The class of interval graphs remains unchanged even when both open and closed intervals are allowed. However, the class of unit interval graphs is enlarged. In particular, the claw $K_{1,3}$ can be represented (uniquely) using one open interval and three closed intervals. Rautenbach and Szwarcfiter [8] use the notation U^{\pm} to designate this class and characterize the graphs in U^{\pm} as those interval graphs that do not contain any of seven forbidden graphs.

This result is established by considering twin-free graphs, that is, graphs in which no two vertices have the same closed neighborhood. For twin-free graphs, the characterization of U^{\pm} requires only four forbidden

graphs. Limiting attention to twin-free graphs is not a substantive restriction: if a graph contains twins we can remove duplicates, apply the structural characterization to the resulting twin-free graph, and then restore each duplicate, giving it an interval identical to that of its twins.

Dourado et al. [3] generalize the results of [8] to the class of mixed interval graphs, that is to graphs that can be represented using intervals that are open, closed, or half-open. They further pose a conjecture characterizing the class of mixed unit interval graphs in terms of an infinite family of forbidden induced subgraphs, proving the conjecture for the special case when the graph is diamond-free. Le and Rautenbach [7] characterize graphs that have mixed unit interval representations in which all intervals have integer endpoints and provide a quadratic-time algorithm that decides if a given interval graph admits such a representation.

The present paper addresses the conjecture given in [3]. The main result is to give a structural characterization of the class of twin-free unit mixed interval graphs. Our characterization includes a set \mathcal{F} consisting of five individual forbidden graphs and five infinite forbidden families. A characterization was proved independently by Joos in [6]. In addition to characterizing the class, our approach provides a quadratic-time algorithm that takes a twin-free, \mathcal{F} -free interval graph and produces a mixed interval representation of it, where the only proper inclusions are between intervals with the same endpoints.

2 Preliminaries

We denote the left and right endpoints of a real interval I(v) by L(v) and R(v), respectively. We say an interval is open on the left if it does not contain its left endpoint and closed on the left if it does. Open and closed on the right are defined similarly. In the introduction, we gave the usual definition of interval graph; we now give a more nuanced definition that allows us to specify which types of intervals are permissible.

Definition 1 Let \mathcal{R} be a set of real intervals. An \mathcal{R} -intersection representation of a graph G is an assignment $\mathcal{I}: x \to I(x)$ of an interval $I(x) \in \mathcal{R}$ to each $x \in V(G)$ so that $xy \in E(G)$ if and only if $I(x) \cap I(y) \neq \emptyset$.

Throughout this paper, we will denote the classes of closed, open, and half-open intervals by $\mathcal{A} = \{[x,y]: x,y \in \mathbb{R}\}, \ \mathcal{B} = \{(x,y): x,y \in \mathbb{R}\}, \ \mathcal{D} = \{[x,y): x,y \in \mathbb{R}\}.$

Definition 2 A graph G is an *interval graph* if it has an A-intersection representation. If in addition, all intervals in the representation have the same length, then G is a *unit interval graph*. We call this a (*unit*) closed interval representation of G.

Definition 3 A graph G is a *mixed interval graph* if it has an \mathcal{R} -intersection representation, where $\mathcal{R} = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$. If in addition, all intervals in the representation have the same length, then G is a (unit) mixed interval graph. We call this a (unit) mixed interval representation.

The proof of the following proposition is part of a similar result from [8] and a sketch is included here for completeness.

Proposition 4 A graph is a mixed interval graph if and only if it is an interval graph.

Proof. By definition, interval graphs are mixed interval graphs. For the converse, let G = (V, E) have a mixed interval representation \mathcal{I} . For each edge $uv \in E$, pick a point x_{uv} in the set $I(u) \cap I(v)$. For each vertex $v \in V$, define $I'(v) = [\min\{x_{uv} : uv \in E\}, \max\{x_{uv} : uv \in E\}]$. One can check that the intervals I'(v) give a closed interval representation of G, so G is an interval graph. \square

An interval graph is *proper* if it has an A-intersection representation in which no interval is properly contained in another. By definition, the class of unit interval graphs is contained in the class of proper

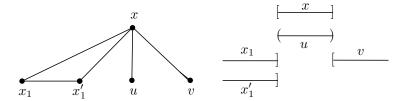


Figure 1: $K_{1,4}^*$ is a unit mixed interval graph.

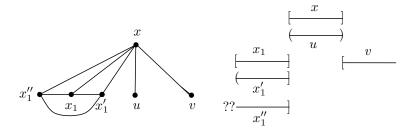


Figure 2: The forbidden graph B, which cannot be induced in a twin-free unit mixed interval graph.

interval graphs, and in fact, the classes are equal [1]. When both open and closed intervals are permitted in a representation, we must refine the notion of proper in order to maintain the inclusion of the unit class in the proper class.

Definition 5 An interval I(u) is *strictly contained* in an interval I(v) if $I(u) \subset I(v)$ and they do not have identical endpoints. An \mathcal{R} -intersection representation is *strict* if no interval in \mathcal{R} is strictly contained in another, i.e., if the only proper inclusions allowed are between intervals with the same endpoints.

2.1 The forbidden graphs

In this section we describe the set \mathcal{F} of graphs that are forbidden for unit mixed interval graphs. The claw $K_{1,3}$ is induced by the vertices x, x_1, u, v in the graph $K_{1,4}^*$ shown in Figure 1. The unit mixed interval representation of $K_{1,3}$ shown in Figure 1 is determined up to relabeling the vertices, reflecting the entire representation about a vertical line, and specifying whether the outer endpoints of x_1 and v are open or closed (which can be done arbitrarily in this case). In this and other figures, we shorten the notation by labeling an interval as x instead of I(x) when the meaning is clear.

With the addition of vertex x'_1 , Figure 1 shows a representation of $K^*_{1,4}$ as a unit mixed interval graph. This representation can be completed by making the three unspecified endpoints open or closed. If $K^*_{1,4}$ is induced in a twin-free, unit mixed interval graph G, then x_1 and x'_1 cannot be twins in G so one interval must have a closed left endpoint and the other an open one. As a result, the graph G shown in Figure 2 cannot be induced in a twin-free unit mixed interval graph, and indeed, graph G is one of the forbidden graphs shown in Figure 3. Similar arguments show that the other graphs in Figure 3 cannot be induced in G. This gives us the following result.

Lemma 6 If G is a twin-free unit mixed interval graph then G does not contain any of the five graphs in Figure 3 as an induced subgraph.

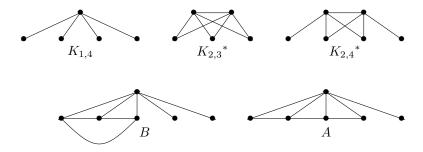


Figure 3: Five forbidden graphs in the set \mathcal{F} of all forbidden graphs.

Next we consider the infinite family of graphs $H_k, k \geq 1$, and show that like $K_{1,4}^*$, each of the graphs in this family is a unit mixed interval graph whose representation is almost completely determined. The base case of this family is $H_1 = K_{1,4}^*$. As an illustration, Figure 4 shows a unit mixed interval representation of H_3 . It is completely determined up to permuting vertex labels, reflecting the entire representation about a vertical line, and specifying whether the right endpoint of v is open or closed. Lemma 7 shows that the same is true for each graph H_k .

Lemma 7 For each $k \ge 1$, the graph H_k shown in Figure 6 is a unit mixed interval graph. If it is induced in a twin-free graph G then the representation of H_k is completely determined up to permuting vertex labels, reflecting the entire representation about a vertical line and specifying whether the unspecified endpoint of v is open or closed. Furthermore, for $0 \le j \le k$, the intervals assigned to a_i and c_j have the same endpoints.

Proof. A unit mixed interval representation of H_k can be constructed as in Figure 4. To prove uniqueness, we proceed by induction on k. Since $H_1 = K_{1,4}^*$, the result for the base case follows from the discussion preceding Lemma 6.

Assume our result holds for H_k and consider H_{k+1} . Since H_k is induced in H_{k+1} , the representation \mathcal{I} of H_k is completely determined up to the conditions in the conclusion. Without loss of generality, we may assume $I(a_j)$ is closed, $I(c_j)$ is open on the left, and the right endpoint of I(v) is unspecified, as illustrated for H_3 in Figure 4.

The intervals assigned to a_{k+1} and c_{k+1} must intersect $I(a_k)$ but not $I(c_k)$ and thus must each have a closed right endpoint at $L(a_k)$. The representation is unit, so $L(a_{k+1}) = L(c_{k+1})$. Since a_{k+1} and c_{k+1} cannot be twins in G, one interval must have an open left endpoint and the other a closed one. This completely determines the representation of H_{k+1} up to the conditions in the conclusion of the lemma. \square

Figure 7 shows the first four infinite forbidden families in the set \mathcal{F} . In each case, the graph H_k is attached where the arrow indicates, that is, the triangle of "tail" vertices a_{k-1}, a_k, c_k in H_k in Figure 6 is superimposed on the same triangle in each graph in Figure 7.

The last infinite family in the set \mathcal{F} arises from the interaction of an H_k graph (with tail vertices a_k and c_k) with an H_n graph (with tail vertices a'_n and d'_n) as shown in Figure 8.

Proposition 8 Let \mathcal{F} be composed of the five individual graphs in Figure 3 and the five infinite families shown in Figures 7 and 8. If G is a twin-free unit mixed interval graph, then G does not contain any of the graphs in \mathcal{F} as an induced subgraph.

Proof. The result follows for the five graphs in Figure 3 by Lemma 6. Next consider the graphs in Families 1-4. In each case, begin with a representation of H_k , which is almost completely determined by Lemma 7.

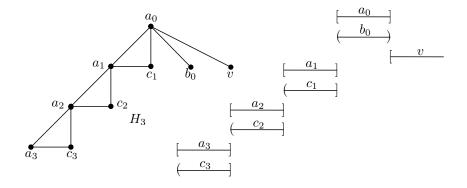


Figure 4: The almost unique representation of H_3 .

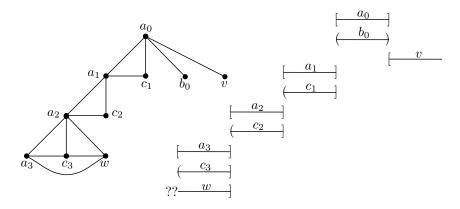


Figure 5: The graph from forbidden Family 1 with k=2.

Without loss of generality, we may assume the intervals in the representation proceed from right to left, with tail vertices a_k assigned to a closed interval and c_k to one that is open on the left, as illustrated in Figure 4 for the case k=3. Now consider a graph in Family 1. It is impossible to assign unit intervals to vertices x, y, z, each of which intersects $I(a_k)$ but not $I(c_k)$, without using identical intervals and thus creating twins. This is the same argument we used for graph B of Figure 2. The arguments for Families 2-4 are similar.

Finally, let H be a unit mixed interval graph in Family 5, where H consists of H_k with tail vertices a_k, c_k and H_n with tail vertices a'_n, d'_n . Fix a unit mixed interval representation of H. By Lemma 7, the representations of H_k and H_n are almost completely determined and the intervals assigned to a_k and c_k have the same endpoints and the intervals assigned to a'_n and a'_n have the same endpoints. Now it is impossible to have all pairs of vertices in the set a_k, c_k, a'_n, d'_n adjacent in a_k except for a_k, a'_n . Thus a_k cannot contain any graph in a_k .

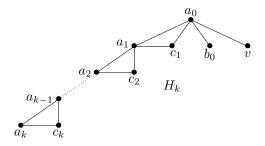


Figure 6: The infinite family of graphs $H_k, k \geq 1$.

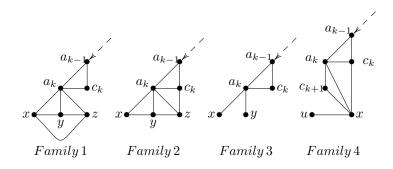


Figure 7: Four forbidden families formed by attaching \mathcal{H}_k as shown.

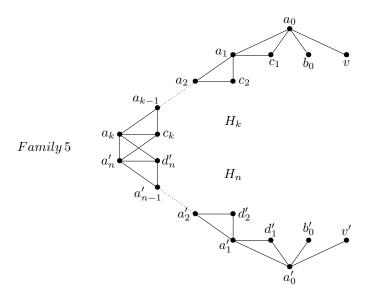


Figure 8: A fifth forbidden family formed by attaching H_k to H_n .

3 The Main Theorem

We are now ready to state our main theorem. We will prove part of it now and the rest will follow from Corollary 26.

Theorem 9 Let G be a twin-free interval graph. The following are equivalent:

- (1) G is a unit mixed interval graph.
- (2) G is a strict mixed interval graph.
- (3) G has no induced graph from the forbidden set \mathcal{F} (consisting of the five individual graphs in Figure 3 and the five infinite families shown in Figures 7 and 8).

We begin by proving that $(2) \Longrightarrow (1)$. The proof that $(1) \Longrightarrow (3)$ follows from Proposition 8, and we will defer the proof that $(3) \Longrightarrow (2)$ to Section 4.3.

Let G = (V, E) be a strict mixed interval graph and fix an \mathcal{R} -representation \mathcal{I} of G, where $\mathcal{R} = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$ as in Definition 3. Take the closure $\overline{I(v)} = [L(v), R(v)]$ of each interval in this representation and remove duplicates, i.e., say two vertices are equivalent if their intervals have the same closure and take one representative from each equivalence class. Let $V' \subset V$ be the set of representative vertices and let $E' \subset E$ be the set of edges induced by V'. Let H = (V', E').

The intervals I(v) for $v \in V'$, determine a proper representation of H. Apply the Bogart-West procedure in [1] to this proper representation to obtain a unit representation \mathcal{I}' of H. For each $v \in V'$, let I'(v) = [L'(v), R'(v)]. As observed in [8], this construction satisfies

$$R(u) = L(v)$$
 if and only if $R'(u) = L'(v)$, for all $u, v \in V'$. (*)

We now reinstate the duplicates we removed by extending \mathcal{I}' to G as follows. For each $v \in V$ take the equivalent representative vertex w and let I''(v) be I'(w), but with endpoints determined by the original status of I(v) as an element of $\mathcal{A}, \mathcal{B}, \mathcal{C}$, or \mathcal{D} . We must show the extension \mathcal{I}'' is a representation of G.

First suppose $u, v \in V$ are adjacent in G. In this case, the intervals I(u) and I(v) in the original representation \mathcal{I} intersect, so their closures intersect. The closures coincide with representative intervals in $\overline{\mathcal{I}}$ that intersect (whether or not $u, v \in V'$) and thus to edges in E'. These edges in turn correspond to intervals in \mathcal{I}' that intersect. When we restore the intervals deleted from \mathcal{I} , (*) then implies that I''(u) and I''(v) intersect.

Now suppose u and v are not adjacent in G. Then either $\overline{I(u)}$ and $\overline{I(v)}$ are disjoint or intersect in one point. In the first case the representative intervals in \mathcal{I}' are disjoint and so I''(u), I''(v) are disjoint. In the second case, without loss of generality we may assume R(u) = L(v), so by (*), R'(u) = L'(v) and then again $I''(u) \cap I''(v) = \emptyset$, as desired. \square

4 Converting an \mathcal{F} -free interval representation to a strict mixed interval representation

In the remaining sections we prove $(3) \Longrightarrow (2)$ of Theorem 9 using Algorithm 17, which turns a closed interval representation of a twin-free, \mathcal{F} -free graph G into a strict mixed interval representation of G. In Section 4.1 we describe certain properties that our initial closed interval representation will satisfy and introduce some needed terminology. We present the algorithm in Section 4.2, and then in Section 4.3 prove it produces the desired mixed interval representation.

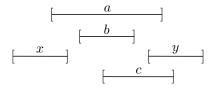


Figure 9: x peeks into ab and ac from the left and y peeks into ab from the right.

4.1 Properties of our initial closed representation

Our next definition is used throughout the rest of the paper and is illustrated in Figure 9, where x peeks into ab and ac from the left and y peeks into ab from the right.

Definition 10 Let G be a graph with a mixed interval representation. For $x, a, b \in V(G)$, we say I(x) (or x) peeks into ab if I(x) intersects I(a) but not I(b). Furthermore, it peeks into ab from the left if in addition $R(x) \leq L(b)$ and peeks into ab from the right if $R(b) \leq L(x)$.

Throughout the rest of this paper, we will be working with a graph and a representation of it that satisfies the following *initial hypothesis*:

Hypothesis 11 G is a twin-free, \mathcal{F} -free graph with a closed interval representation having distinct endpoints satisfying the following **inclusion property**: for each proper inclusion $I(u) \subset I(v)$ there exist $x, y \in V(G)$ such that x peeks into vu from the left and y peeks into vu from the right.

Proposition 12 Every twin-free interval graph G has a closed interval representation with distinct endpoints satisfying the inclusion property of Hypothesis 11.

Proof. Given a twin-free interval graph G, use the standard PQ-tree algorithm (see [4]) to order the maximal cliques of G as X_1, X_2, \ldots, X_m so that the cliques containing any particular vertex appear consecutively. Let v be a vertex of G appearing in cliques $X_j, X_{j+1}, \ldots, X_{j+k}$. The standard method for producing an interval representation of G assigns interval I(v) = [j, j+k] to vertex v. We modify this representation so that vertex v is assigned interval $\hat{I}(v) = [j - \frac{1}{k+3}, j+k+\frac{1}{k+3}]$. Since G is twin-free, the endpoints of the intervals in $\{\hat{I}(v): v \in V(G)\}$ are distinct by construction. It is easy to check that $\hat{I}(v)$ properly contains $\hat{I}(u)$ if and only I(v) properly contains I(u) and I(u), I(v) have distinct endpoints.

Now suppose I(v) properly contains I(u) and let X_s be a maximal clique in G containing u and v. Then by our construction, there exist maximal cliques X_r and X_t each containing v but not u with r < s and t > s. Thus there exist vertices $x \in X_r$ and $y \in X_t$ distinct from v so that $x, y \notin X_s$. Then in the original representation x peeks into vu from the left and y peeks into vu from the right. It follows that in the modified representation x peeks into vu from the left and v peeks into vv from the right, as desired. \square

In Proposition 13, the intervals in the representation are closed and in their initial positions, before Algorithm 17 is applied. Later we continue to refer to Proposition 13 for the graph induced by vertices whose intervals remain in their initial positions. For closed intervals, strict and proper containment are equivalent, but in mixed interval representations, a containment can be proper without being strict. Proposition 13 is phrased in terms of strict containment for this reason. A similar result appears in [8].

Proposition 13 If G is a graph with a closed interval representation satisfying Hypothesis 11 then the following properties hold.

- (1) No interval can strictly contain two other intervals.
- (2) No interval is strictly contained in two other intervals.
- (3) If $I(u) \subset I(v)$ then at most two intervals peek into vu from the left and at most two peek into vu from the right. Furthermore, if two intervals peek in from one side, then neither is contained in the other.

Proof. We will prove Proposition 13 only for peeking in from the left and for left endpoints since the results for the right are analogous.

Proof of (1): Suppose there exist two distinct vertices $u \neq v$ of G whose intervals are strictly contained in I(w). We will show that every possible configuration of these intervals leads to a contradiction.

First consider the case of strictly nested intervals: $I(u) \subset I(v) \subset I(w)$. By Hypothesis 11 there exist vertices x, y, t for which x peeks into wv from the left, y peeks into wv from the right, and t peeks into vu from the left. If x and t are adjacent, then w, x, t, v, u, y induce the forbidden graph A in G, a contradiction since G is \mathcal{F} -free. (When we describe forbidden graphs in this way, we generally list the vertices from top to bottom and left to right, corresponding to how they are drawn in the accompanying figures.) Otherwise, if x and t are not adjacent, then the vertices w, x, t, u, y induce forbidden graph $K_{1,4}$ in G, also a contradiction. Thus the representation of G cannot contain three nested intervals.

Since they are not nested, we may suppose without loss of generality that I(u) has the leftmost left endpoint and I(v) has the rightmost right endpoint of all the intervals strictly contained in I(w). By Hypothesis 11 there exist vertices x, y for which x peeks into wu on the left and y peeks into wv on the right. If $I(u) \cap I(v) = \emptyset$ then the vertices w, u, v, x, y induce the forbidden graph $K_{1,4}$ in G, a contradiction. Hence I(u) and I(v) intersect. Since u and v are not twins, there must be a vertex t adjacent to exactly one of them. Without loss of generality, assume I(t) intersects I(u) but not I(v). If x and t are not adjacent, then vertices w, x, t, v, y induce $K_{1,4}$ in G, a contradiction. Thus x and t are adjacent, but then w, x, t, u, v, y induce graph A in G, which is also a contradiction.

Proof of (2): Suppose there exist u, v, w so that I(u) is strictly contained in both I(v) and I(w). Without loss of generality we may assume that L(w) < L(v) < L(u). By (1), no three intervals can be nested so R(w) < R(v). Then there exist vertices x, y where x peeks into vu from the left and y peeks into vu from the right. Now the vertices v, v, v, v, u, v induce the graph $K_{2,3}^*$ in $V_{2,3}$ in V

Proof of (3): There exist vertices x, y where x peeks into vu from the left and y peeks into vu from the right. If two more vertices x', x'' peeked into vu from the left then v, x, x', x'', u, y would induce the forbidden graph B in G, a contradiction. We get a similar contradiction if three vertices peek in from the right.

To prove the last sentence, suppose x, x' peek into vu from the left and for a contradiction, assume $I(x') \subset I(x)$. By Hypothesis 11, there exist vertices y, t for which y peeks into vu and t peeks into xx' from the right. If I(t) is contained in I(v) this contradicts part (1), since I(v) also contains I(u). So I(u) is contained in both I(t) and I(v), contradicting (2). \square

Next we give a brief overview of Algorithm 17, which will be applied to a graph G satisfying Hypothesis 11. Initially all intervals in the representation are closed and their endpoints are colored white. The algorithm processes intervals I(x), may modify them by moving one or both endpoints, and may convert an endpoint from closed to open. When an interval is processed, one or both endpoints change from white to red. In Theorem 20, we show that once an endpoint turns red it is never moved, allowing us to prove that the algorithm terminates.

In Definition 14, we define an ab-pair. Algorithm 17 proceeds in complete sweeps, where we begin with an ab-pair and process intervals, sweeping left and then right to form a complete sweep. Starting from a particular ab-pair a_0b_0 , in Definition 15 we recursively define vertices $a_j, b_j, c_j, d_j, a'_j, b'_j, c'_j, d'_j$ for $j \geq 0$ (some of which may not exist). These vertices correspond to the intervals that the algorithm will process

during the sweep. After presenting Definition 15, in Lemma 16 we show these quantities are well-defined for the initial representation and later, in Theorem 20, show they are well-defined after one or more sweeps of the algorithm. These definitions are illustrated in Figure 10 and will be used in Lemma 16 and to formulate Algorithm 17.

Definition 14 Let G be a graph with a mixed interval representation. We say that vertices a and b form an ab-pair if I(b) is strictly contained in I(a).

Definition 15 Let G be a graph initially satisfying Hypothesis 11 whose representation may have been modified by sweeps S_1, S_2, \ldots, S_i of Algorithm 17. Let a_0b_0 be an ab-pair that will initiate a new sweep S_{i+1} of Algorithm 17.

- (a) If there exists a vertex with the same closed neighborhood as a_0 except for vertices peeking into a_0b_0 from the left, call such a vertex c_0 . Analogously, if there exists a vertex with the same closed neighborhood as a_0 except for vertices peeking into a_0b_0 from the right, call such a vertex d_0 .
- (b) Suppose that, moving to the left from a_0b_0 , we have defined a_j, b_j, c_j, d_j for $0 \le j \le k$, that a_j exists for each j, and that at least one of b_k or c_k exists. We next define $a_{k+1}, b_{k+1}, c_{k+1}, d_{k+1}$ (some of which may not exist).
 - If only one vertex peeks into $a_k b_k$ or $a_k c_k$ from the left, call it a_{k+1} ; if there are two, call them a_{k+1} and c_{k+1} , where $R(a_{k+1}) < R(c_{k+1})$. When c_{k+1} exists we say $a_{k+1} c_{k+1}$ is a leftward ac-pair in the representation.
 - If there exists a vertex whose representing interval is strictly contained in $I(a_{k+1})$, call it b_{k+1} .
 - If there exists a vertex whose closed neighborhood is the same as that of a_{k+1} except that it is not adjacent to a_k or d_k , then call such a vertex d_{k+1} .
- (c) When moving to the right from an initial ab-pair a_0b_0 , we typically depict the vertices with primes. That is, we repeat the definition in part (b) for $k \geq 1$, replacing each occurrence of a_k by a'_k , b_k by b'_k , c_k by d'_k , d_k by c'_k , "left" by "right", and "right" by "left". In particular, this defines rightward ad-pairs.

Figure 10 illustrates how the intervals corresponding to this definition are related to each other. The representation may contain additional intervals that are not shown. For simplicity, we often refer to vertices that satisfy the properties of Definition 15, and to their intervals in a given representation, as being of type $\mathbf{a}, \mathbf{b}, \mathbf{c}$, or \mathbf{d} . Lemma 16 lists various properties of these vertices. In these proofs and in the rest of this paper we will usually omit "the tail of" when saying that vertices induce the tail of a forbidden graph.

Lemma 16 Let G be a graph satisfying Hypothesis 11 whose representation has not been modified by sweeps of Algorithm 17. Fix an ab-pair a_0b_0 . The following properties hold.

- (1) The quantities in Definition 15 are well-defined if they exist.
- (2) If $a_k b_k$ is an ab-pair and $a_k c_k$ is a leftward ac-pair, then $I(b_k)$ intersects but is not contained in $I(c_k)$.
- (3) Let $a_k b_k$ be an ab-pair and let $a_k c_k$ be a leftward ac-pair. Each interval that peeks into $a_k c_k$ from the left also peeks into $a_k b_k$ from the left.
- (4) If two intervals peek into an ab-pair or a leftward ac-pair from the left then neither is contained in the other.

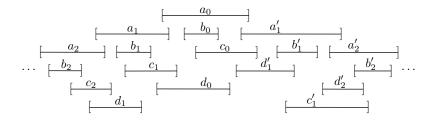


Figure 10: Illustrating intervals of types a, b, c, d.

- (5) No vertex in G is adjacent to three vertices of type a.
- (6) If $a_k c_k$ is a leftward ac-pair, then every interval intersecting $I(c_k)$ also intersects $I(a_k)$.

Analogous statements hold for rightward ad-pairs.

Proof. We prove the statements for leftward *ac*-pairs. The proofs of the analogous statements for rightward *ad*-pairs are similar.

Proof of (1): In part (a) there is at most one such c_0 because G is twin-free, and similarly there is at most one d_0 . In part (b), there are at most two vertices that peek into a_kb_k or a_kc_k from the left for otherwise the forbidden graph B or (the tail of) a forbidden graph from Family 1 would be induced in G, a contradiction. If there are two such vertices, Hypothesis 11 implies that their endpoints are unequal, so a_{k+1} and c_{k+1} are well-defined. In addition, at most one interval can be strictly contained in a_{k+1} by Proposition 13(1), so b_{k+1} is well-defined. There is at most one d_k since G is twin-free. The quantities in part (c) are well-defined analogously.

Proof of (2): We know that $I(b_k)$ cannot be contained in $I(c_k)$ by Proposition 13(2). Suppose $I(b_k)$ does not intersect $I(c_k)$ and let y be a vertex that peeks into $a_k b_k$ from the left. Then the vertices $a_{k-1}, a_k, c_k, y, b_k$ induce in G (the tail of) a graph from Family 3, a contradiction.

Proof of (3): By Hypothesis 11, we know there exists a vertex x that peeks into $a_k b_k$ from the left. Suppose there exists a vertex y that peeks into $a_k c_k$ from the left but not into $a_k b_k$. Then I(y) intersects $I(b_k)$, so $a_{k-1}, a_k, c_k, x, y, b_k$ induce a forbidden graph from Family 2, a contradiction.

Proof of (4): Suppose u, v peek into $a_k b_k$ from the left and $I(u) \subset I(v)$. By Hypothesis 11, there exists a vertex y peeking into vu from the right. Then either two intervals are contained in $I(a_k)$ ($I(b_k)$ and I(y)) or $I(b_k)$ is contained in two intervals ($I(a_k)$ and I(y)). Both contradict Proposition 13.

Now suppose k is minimum such that there exist u, v peeking into $a_k c_k$ from the left and $I(u) \subset I(v)$. If b_k exists then (3) together with the preceding paragraph gives a contradiction. So b_k does not exist and, in particular, $k \geq 1$. By the minimality of k, we know $I(a_k) \not\subseteq I(c_k)$ and so $L(a_k) < L(c_k)$. Again, there exists a vertex y peeking into vu from the right and since b_k does not exist, $I(y) \not\subseteq I(a_k)$. Thus I(y) intersects $I(c_k)$.

Furthermore, I(y) must intersect $I(b_{k-1})$ and/or $I(c_{k-1})$ if they exist, since otherwise the three vertices a_k, c_k, y all peek into $a_{k-1}b_{k-1}$, which induces the forbidden graph B in G, and/or peek into $a_{k-1}c_{k-1}$, which induces a forbidden graph from Family 1. But now if b_{k-1} exists, the vertices $y, a_{k-1}, v, c_k, b_{k-1}, z$ induce the forbidden graph $K_{2,4}^*$, where z is a vertex that peeks into $a_{k-1}b_{k-1}$ from the right. Thus $k \geq 2$ and c_{k-1} exists. We must have $R(y) < R(a_{k-1})$ for otherwise I(y) would contain both $I(c_k)$ and $I(a_{k-1})$, violating Proposition 13(1). However, $R(y) < L(a_{k-2})$, or else the three vertices y, a_{k-1}, c_{k-1} all peek into $a_{k-2}b_{k-2}$

or $a_{k-2}c_{k-2}$ and induce B or a forbidden graph from Family 1. But now $a_{k-2}, a_{k-1}, c_k, v, y$ induce in G a forbidden graph in Family 4, a contradiction.

Proof of (5): Assume a vertex x is adjacent to three vertices of type \mathbf{a} . Then its interval I(x) in the given representation must intersect three consecutive intervals of type \mathbf{a} . If $I(a_0)$ is the middle interval, then $x \neq b_0$ and $I(b_0)$ is contained in both $I(a_0)$ and I(x), contradicting Proposition 13(2). Thus we may assume without loss of generality that x is adjacent to a_{k+1}, a_k , and a_{k-1} , where $1 \leq k \leq n$. Thus $L(x) \leq R(a_{k+1})$ and $L(a_{k-1}) \leq R(x)$. If b_k exists then $x \neq b_k$ and $I(b_k)$ is contained in both $I(a_k)$ and I(x), again contradicting Proposition 13(2). Thus b_k does not exist and c_k must exist.

If b_{k-1} exists then I(x) must intersect $I(b_{k-1})$, or else x, a_k, c_k would peek into $a_{k-1}b_{k-1}$ from the left, contradicting Proposition 13(3). But now $x, a_{k-1}, a_{k+1}, c_k, b_{k-1}, a_{k-2}$ induce the forbidden graph $K_{2,4}^*$ in G, a contradiction (where a_{-1} is interpreted as a'_1 if k=1).

Thus b_{k-1} does not exist. Since b_0 exists, this implies that $k \geq 2$ and c_{k-1} exists. Hence both c_k and c_{k-1} exist. If x is not adjacent to c_{k-1} , then a_k, c_k, x all peek into $a_{k-1}c_{k-1}$, inducing a forbidden graph from Family 1, a contradiction. So x must be adjacent to c_{k-1} , but then $a_{k-2}, a_{k-1}, c_{k-1}, c_k, a_{k+1}, x$ induce in G a graph in Family 4, also a contradiction.

Proof of (6): Let $a_k c_k$ be a leftward ac-pair. Suppose there exists a vertex w for which I(w) intersects $I(c_k)$ but not $I(a_k)$. Thus $L(a_{k-1}) \leq R(a_k) < L(w) \leq R(c_k)$. If b_{k-1} exists then either $I(b_{k-1})$ and I(w) are both contained in $I(a_{k-1})$, or $I(b_{k-1})$ is contained in both I(w) and $I(a_{k-1})$. Both possibilities contradict Proposition 13.

So b_{k-1} does not exist. Thus $k \geq 2$ and the vertices $c_{k-1}, a_{k-2}, a_{k-3}$ exist (where a'_1 replaces a_{k-3} if k = 2). Furthermore $I(w) \not\subset I(a_{k-1})$ (or w would be b_{k-1}), so I(w) intersects $I(a_{k-2})$. Let f_{k-2} be b_{k-2} if it exists, and c_{k-2} otherwise. Now a_{k-1} and c_{k-1} peek into the pair $a_{k-2}f_{k-2}$ so w cannot also peek into this pair, or this would induce either B or a forbidden graph from Family 1. Thus I(w) must intersect $I(f_{k-2})$ but not $I(a_{k-3})$, by Lemma 16(5).

If b_{k-2} exists, $b_{k-2} = f_{k-2}$, then the vertices $w, a_{k-2}, c_k, c_{k-1}, b_{k-2}, a_{k-3}$ induce the graph $K_{2,4}^*$ in G, a contradiction. So b_{k-2} does not exist, $k \geq 3$, and $c_{k-2} = f_{k-2}$ exists. Then the vertices $a_{k-3}, a_{k-2}, c_{k-2}, c_{k-1}, c_k, w$ induce a graph from Family 4 in G, a contradiction. \square

4.2 The SWEEP algorithm

In this section we give an overview of Algorithm 17, and then present the specifics and list the operations in Tables 1 and 2. In Section 4.3, we prove the algorithm converts a representation of a graph G satisfying Hypothesis 11 into a strict mixed interval representation of G.

As a sweep progresses, starting from an ab-pair, vertical zone lines (perpendicular to the intervals) are established in each step of the sweep. Except for the outermost endpoints of a sweep, endpoints that turn red during a sweep always lie on a zone line of that sweep. We maintain the invariant that after each complete sweep of the algorithm, $xy \in E(G)$ if and only if $I(x) \cap I(y) \neq \emptyset$.

In the left part of a sweep we identify any vertices a_k, b_k, c_k, d_k that exist, and after the left part is complete their intervals will share the same endpoints. Type **a** intervals will be closed at both endpoints, type **b** will be open at both endpoints, type **c** will be open on the left and closed on the right, and type **d** will be closed on the left and open on the right. We abbreviate this by saying that intervals $I(b_k)$, $I(c_k)$, and $I(d_k)$ are modified to $match\ I(a_k)$. Intervals in the right part of a sweep are treated similarly.

Algorithm 17 (SWEEP) Input: A graph G with a representation satisfying Hypothesis 11, with all endpoints colored white.

Output: A strict mixed interval representation of G.

Step	Operation
[0.1]	Identify an ab -pair a_0b_0 . If none exists, STOP.
[0.1]	Otherwise, establish zone lines $M_0 = L(a_0)$ and $M'_0 = R(a_0)$.
[0.2]	Identify d_0 and c_0 , if they exist.
[0.3]	Identify a_1, a'_1 and if they exist, c_1, d'_1 .
[0.4]	Identify one or both of b_1, b'_1 , if they exist. ²
	Redefine $I(b_0) := (M_0, M'_0)$. If d_0 exists and $I(d_0)$ has white
	endpoints, redefine $I(d_0) := [M_0, M'_0)$ and color its endpoints
[0.5]	red. If c_0 exists and $I(c_0)$ has white endpoints, redefine
	$I(c_0) := (M_0, M_0']$
	and color its endpoints red.
[0.6]	Color the endpoints of $I(a_0), I(b_0)$ red. ³
[0.7]	GO TO STEP [1.1].
	$^{1}L(a_1) < L(c_1)$ by Lemma 16(4) and Theorem 20 parts (1a,
	2). Similarly, $R(d'_1) < R(a'_1)$.
	$2b_1 \neq c_1$ since $R(b_1) \leq R(a_1) < R(c_1)$. Similarly, $b_1 \neq d'_1$.
	$^{3}c_{1},d_{1}^{\prime}$ may not exist.

Table 1: Base step for one sweep of the SWEEP algorithm.

One sweep S_i of the algorithm: Each sweep S_i consists of a base step followed by the steps of the left part of S_i and the right part of S_i .

Base step: Table 1 specifies the operations for the base step of a single sweep. We identify an ab-pair a_0b_0 , establish zone lines M_0, M'_0 at the endpoints of $I(a_0)$, and identify c_0 and d_0 if they exist.

The intervals for b_0, c_0, d_0 (if they exist) are modified to match $I(a_0)$. We color the endpoints of the intervals for a_0, b_0, c_0, d_0 red

Left part of S_i , **step** k: Table 2 specifies the operations for the k-th step of S_i .

After the base step, we sweep to the left. At the end of step k-1, the zone line M_{k-1} has been established, we have identified the one or two intervals, $I(a_k)$ and perhaps $I(c_k)$, that peek into $a_{k-1}b_{k-1}$ from the left (into $a_{k-1}c_{k-1}$ if b_{k-1} doesn't exist).

First we redefine $R(a_k)$ to equal M_{k-1} and color it red. There are three possibilities for what happens next, and two of them result in the end of the left part of the sweep.

- If neither b_k nor c_k exists, we say a_k is a terminal **a**.
- If c_k exists and $L(a_k)$ is red from an earlier sweep, we say a_k is a merging **a** and that c_k is a merging **c**. In this case, modify $I(c_k)$ to match $I(a_k)$ and color its endpoints red.
 - If a_k is a terminal or merging **a**, we say the left part of S_i ends and we begin the right part of S_i . This occurs in step [k.1] of Table 2.
- Otherwise, we continue step k. We color $L(a_k)$ red, establish a zone line $M_k = L(a_k)$, and identify d_k if it exists. At least one of b_k , c_k exists. A vertex peeks into $a_k b_k$ from the left by Hypothesis 11, or into $a_k c_k$ from the left by Lemma 16(6) and because G is twin-free. In preparation for step k+1 we can now identify a_{k+1} and, if they exist, c_{k+1} and b_{k+1} .

We modify the intervals that exist for b_k , c_k to match $I(a_k)$ and color their endpoints red. The interval for d_k is moved only if its endpoints are white and if $I(d_{k-1})$ either matches $I(a_{k-1})$ or does not exist. We then continue sweeping left and go to step [k+1.1] of Table 2.

It will help to note that in these steps, any endpoints that are redefined are changed as follows: $R(a_k), L(b_k), L(c_k), R(c_k)$ move to the left while $R(b_k), L(d_k), R(d_k)$ move to the right.

Right part of S_i : Analogously, in the right part of S_i the roles of vertices of types \mathbf{c} , \mathbf{d} are reversed. When the right part terminates in a step of the form [k.1'], the sweep begun with a_0b_0 is complete. In the right part of a sweep, $L(a'_k)$, $R(b'_k)$, $L(d'_k)$, $R(d'_k)$ move to the right and $L(b'_k)$, $L(c'_k)$, $R(c'_k)$ move to the left.

Termination: Each complete sweep of the algorithm reduces the number of strict inclusions among the intervals. After a complete sweep S_i , if any strict inclusions remain we identify a new ab-pair and begin a new sweep S_{i+1} . When no strict inclusions remain the algorithm terminates, and it will follow from Theorem 20(4) that we have produced a strict mixed interval representation of G.

4.3 Proof of Correctness of the SWEEP algorithm

We now prove that Algorithm 17 correctly produces a strict interval representation of the input graph G. We carry out the proof by induction on the number of complete sweeps of the algorithm. We will prove that once the endpoints of an interval are colored red, the interval remains unchanged until the algorithm terminates. Also, if the endpoints of one or more intervals are white after a sweep then these intervals have not changed from the initial closed representation of G given in Hypothesis 11. Therefore they satisfy Proposition 13 and Lemma 16, and cannot induce in G a graph in the forbidden set \mathcal{F} .

Definition 18 An endpoint of an interval I(v) participates in sweep S if v is identified as being of type a, b, c, or d in S and after any modification during S, the endpoint lies on a zone line established in S. In addition, left endpoints of merging c's and right endpoints of merging d's are also said to participate in S. A vertex v participates in sweep S if at least one endpoint of I(v) participates in S.

During the left part of the sweep, for vertices identified as a terminal **a** or a merging **a**, only right endpoints participate, and for vertices identified as type **d**, either both endpoints or neither endpoint participates (see [k.5] in Table 2). For other vertices identified as being of type **a** and all vertices identified as being of type **b** or **c**, both endpoints participate.

The next remark, which we use repeatedly in the proof of Theorem 20, follows from the construction given in Algorithm 17.

Remark 19 (a) At any point in the algorithm, if an endpoint of I(v) is white then the endpoint is in its initial position and is closed.

(b) After any number of complete sweeps, if I(v) has one red and one white endpoint then v was a terminal \mathbf{a} in the sweep that turned the endpoint red.

Parts (2) and (4) of the next theorem are crucial to proving our algorithm terminates and that the graph represented by the intervals doesn't change. The other parts are needed in the induction.

Theorem 20 Let the input to Algorithm 17 be a graph G with a representation satisfying Hypothesis 11, and let S_i be the ith sweep of the algorithm. For each $i \ge 1$,

- (1) Suppose I(u) is strictly contained in I(v) at the beginning of S_i .
 - (a) All four endpoints of these intervals are white.
 - (b) If x peeks into vu from the left, then R(x) is white. If x peeks into vu from the right then L(x) is white.

Step	Step Operation	Step	Operation
	Redefine $I(a_k) := [L(a_k), M_{k-1}]$ and color $R(a_k)$		Redefine $I(a'_k) := [M'_{k-1}, R(a'_k)]$ and color $L(a'_k)$
[k.1]	red. If a_k is a merging a_i , redefine $I(c_k) := (L(a_L), M_{k-1}]$ and color its endpoints red. If a_L	[k.1']	red. If a_k is a merging \mathbf{a} , redefine $I(a_k) := [M', B(a',)]$ and color its endpoints red. If a'
	is a terminal or merging a , GO TO STEP [1.1'],		is a terminal or merging \mathbf{a} , GO TO STEP [0.1]
	and begin a right sweep.		and begin a new complete sweep.
[k.2]	Otherwise, color $L(a_k)$ red, establish zone line $M_k = L(a_k)$, and identify d_k if it exists. ¹	[k.2']	
[k.3]	Identify a_{k+1} and, if they exist, c_{k+1} and b_{k+1} .	[k.3']	
	If they exist, redefine $I(b_k) := (M_k, M_{k-1}),$		In $[k.2]$ - $[k.5]$, replace 'left' by 'right' and vice
[k.4]	$I(c_k) := (L(a_k), M_{k-1}]$ and color their endpoints	[k.4']	versa; replace a_k , b_k by a'_k , b'_k ; c_k by d'_k , d_k by
	red. ³		c_k' ; M_k by M_k' .
	If d_k exists and $I(d_k)$ has white endpoints,		
[7 2]	and either d_{k-1} does not exist or $I(d_{k-1}) = $	[1, 5,1]	
ે. -		ે.	
	color its endpoints red. ⁴		
[k.6]	GO TO STEP $[k+1.1]$.	[k.6']	GO TO STEP $[k+1.1']$.
	There is at most one choice for d_k since G is		
	twin-free. $L(a_{k+1}) < L(c_{k+1})$ by Lemma 16(4) and The-		
	orem 20 parts (1a, 2). Also $b_{k+1} \neq c_{k+1}$ since		
	$R(b_{k+1}) \le R(a_{k+1}) < R(a_{c+1}).$		
	³ At least one exists since a_k is not a terminal a .		
	⁴ If $k = 1$, interpret M_{k-2} as M'_0 .		

Table 2: k-th step of the left and right parts of a complete sweep, $k \ge 1$.

- (2) The quantities defined in Definition 15 and the operations specified for sweep S_i in Tables 1 and 2 are well-defined.
 - Each endpoint participating in sweep S_i is white at the beginning of S_i and red at the end of S_i . In particular, if an endpoint of v was colored red before S_i then it is not moved during S_i .
- (3) At the end of S_i , the following are true for each zone line M established during S_j , $1 \le j \le i$:
 - (a) Any endpoint on M is red.
 - (b) There exist vertices a, \hat{a} of type **a** participating in S_i with $R(a) = L(\hat{a}) = M$.
 - (c) Each interval with an endpoint on M shares the same endpoints as an interval of type \mathbf{a} whose vertex participates in S_i .
 - (d) If M is established in the left part of S_j there exists an interval of type **b** or **c** whose left endpoint is on M and is open. An analogous statement holds for the right part of S_j .
 - (e) Each interval with an endpoint on M either participates in S_j or, for some sweep $S_\ell, j < \ell \le i$, is a merging $\mathbf{c}(\mathbf{d})$ whose left (right) endpoint is moved to M during S_ℓ .
- (4) At the end of S_i , the graph represented by the intervals is G.

Proof of Theorem 20. The proof is by induction on i. We begin with the base case i = 1. In Lemma 16(1), we showed that the quantities a_j, b_j, c_j, d_j are well-defined before any sweeps have been performed, establishing the first sentence of (2) in the base case. The remaining part of (2) and statements (1), (3) and (4) are either trivially true or follow easily from the construction in the algorithm.

Now suppose statements (1)-(4) are true for $i: 1 \le i \le r$. We must prove they are true for i = r + 1, and we call S_{r+1} , the *current sweep*.

Proof of (1a). Suppose, to the contrary, that at least one endpoint of I(u) or of I(v) is red at the beginning of S_{r+1} . Let S_i be the first sweep in which an endpoint turned red, where $1 \le i \le r$.

Case 1. Suppose at least one endpoint of I(u) and at least one of I(v) turn red during S_i .

First, suppose both endpoints of I(v) and both endpoints of I(u) turn red during S_i . Then I(u) is not strictly contained in I(v) at the end of S_i , since the algorithm never creates strict inclusions during a given sweep. Furthermore, by the induction assumption red endpoints are not moved by the algorithm between the end of S_i and the beginning of S_{r+1} , so I(u) is not strictly contained in I(v) at the beginning of S_{r+1} , a contradiction.

Next, suppose both endpoints of I(v) and exactly one endpoint of I(u) turn red during S_i . Without loss of generality, suppose R(u) turns red and L(u) remains white during S_i . By the induction hypothesis (2) and Remark 19, u is a terminal \mathbf{a} for the left part of S_i , and after S_i the right endpoint R(u) lies on the leftmost zone line M of S_i . Since v participates in S_i and is not a terminal \mathbf{a} , at the end of S_i both endpoints of I(v) lie on zone lines of S_i . By the induction hypothesis (2), the positions of L(v), R(v) and R(u) do not change between the end of S_i and the beginning of S_{r+1} , so at the end of S_i , L(v) = R(u) = M. In order to have $I(u) \subseteq I(v)$ at the beginning of S_{r+1} , the left endpoint L(u) is moved to M during the right part of some sweep S_ℓ with $i < \ell \le r$. Thus u is a terminal or merging \mathbf{a} for the right part of S_ℓ . So for S_ℓ , we have $u = a'_k$ for some k and there exists a'_{k-1} with $R(a'_{k-1}) = M$. By (2), $R(a'_{k-1})$ is white at the beginning of S_ℓ and thus also at the end of S_i but lies on a zone line of S_i , contradicting (3a).

Thus, exactly one endpoint of I(v) turns red during S_i . Without loss of generality, suppose R(v) turns red and L(v) remains white during S_i . By the induction hypothesis (2) and Remark 19, v is a terminal **a** for the left part of S_i and after S_i , its right endpoint R(v) lies on the leftmost zone line M of S_i . Since u participates in S_i , is adjacent to v, and is not a terminal **a**, after S_i both endpoints of I(u) lie on zone

lines of S_i . By the induction hypothesis (2), the endpoints of I(u) do not change position between the end of S_i and the beginning of S_{r+1} when $I(u) \subseteq I(v)$, so at the end of S_i , L(u) = R(u) = M. Also by the induction hypothesis (3c), I(u) has the same endpoints after S_i as some $I(a_j)$, where a_j participates in S_i . Thus $|I(a_j)| = 0$ after S_i . However, $L(a_j) < L(a_{j-1})$ initially, before any sweeps, by Hypothesis 11. So during S_i , $L(a_j)$ is unchanged and $R(a_j)$ is retracted (to the left) to $L(a_{j-1})$. Thus $|I(a_j)| > 0$ after S_i , a contradiction.

Case 2. Suppose both endpoints of I(u) are white at the end of S_i .

Without loss of generality assume R(v) turned red in S_i , lying on a zone line M established during S_i . First consider the case where $I(u) \subseteq I(v)$ at the end of S_i . By the construction in the algorithm, there is a vertex a of type \mathbf{a} (possibly equal to v) for which R(a) is red and I(a), I(v) have the same endpoints at the end of S_i . But then we would have identified au as an ab-pair and the endpoints of I(u) would also have turned red during S_i , a contradiction. Thus at the end of S_i , $I(u) \not\subseteq I(v)$ and either R(u) > R(v) = M or L(u) < L(v).

Suppose R(u) > M at the end of S_i . Since $I(u) \subseteq I(v)$ at the start of S_{r+1} , by the induction hypothesis (4) we know u is adjacent to v in G, thus at the end of S_i (and indeed initially) we have $L(u) \leq M$. Since R(v) = M and is red at the end of S_i , there exists some ℓ with $i < \ell < r + 1$ for which u participates in S_ℓ , with R(u) retracted to the left and $R(u) \leq M$ at the end of S_ℓ .

If R(u) is retracted in the left part of S_{ℓ} , then u is of type **a** or **c** and peeks into $a_k b_k$ (or $a_k c_k$) of S_{ℓ} for some k, and R(u) is retracted to $L(a_k) \leq M$ during S_{ℓ} . Indeed, $L(a_k) \neq M$ by (3a) because $L(a_k)$ is white at the beginning of S_{ℓ} , by induction hypothesis (2). But then v is not adjacent to whichever of b_k , c_k exists before S_{ℓ} but is adjacent to them after S_{ℓ} , contradicting (4).

If R(u) is retracted in the right part of S_{ℓ} , then u is of type \mathbf{c} and is matched to some vertex a'_k . In this case, a'_{k+1} exists. Both endpoints of I(u) turn red in S_{ℓ} and do not move between the end of S_{ℓ} and the beginning of S_{r+1} . Then at the end of S_{ℓ} , $R(a'_{k-1}) = L(a'_k) = L(u)$ and $R(a'_k) = R(u)$, and the right endpoints $R(a'_k)$ and $R(a'_{k-1})$ do not move during S_{ℓ} , by the construction in the algorithm. We know I(v) contains R(u) at the end of S_{ℓ} and will show it also contains L(u) then. If L(v) is red at the beginning of S_{ℓ} then $L(v) \leq R(a'_{k-1})$ because I(v) contains I(u) at the beginning of S_{r+1} and red endpoints don't move by (2). At the beginning of S_{ℓ} , $R(a'_{k-1})$ is white by (2) so it cannot lie on the zone line at L(v), by (3a). Thus $L(v) < R(a'_{k-1})$, I(v) intersects the intervals for a'_{k-1} , a'_k and a'_{k+1} , both at this stage and initially, by (4). But this contradicts Lemma 16(5).

If R(u) is retracted in the base step of S_{ℓ} , then $u = c_0$ and a minor modification of the preceding paragraph results in the same contradiction.

Therefore L(v) is white at the beginning of S_{ℓ} and by Remark 19, v was a terminal **a** for the left part of S_i . If L(v) is moved in a later sweep, it can only be moved to the right as a terminal or merging **a** for the right part of a sweep, so I(v) intersects the intervals for a'_{k-1}, a'_k and a'_{k+1} and we get the same contradiction.

Therefore at the end of S_i we have $R(u) \leq M$ and L(u) < L(v). Indeed, $R(u) \neq M$ at the end of S_i by (3a) because R(u) is white. At the end of S_i , if L(v) is red we have a case symmetric to the one just considered so we may assume L(v) is white then. Since R(v) is red, this implies that v is a terminal \mathbf{a} for the left part of S_i and there exists \hat{a} with $R(v) = L(\hat{a})$ at the end of S_i , by (3b). Thus if v participates in another sweep prior to S_{r+1} , it will be a terminal or merging \mathbf{a} for the right part of that sweep and L(v) will move to the right, turn red, and not be moved again before the start of S_{r+1} . Thus L(u) must move to the right of the initial position of L(v) during some sweep S_j , where i < j < r + 1. There are two possibilities.

If u participates in the right part of S_j then $u=a_k'$ or $u=d_k'$ for some $k\geq 1$. In this case, there exists a_{k-1}' participating in S_j with right endpoint on a zone line M' of S_j . Since L(u) will move to M', turn red in S_j , and not move again, we must have $L(v)\leq M'$. So there exists b_{k-1}' or d_{k-1}' so that u peeks into $a_{k-1}'b_{k-1}'$ ($a_{k-1}'d_{k-1}'$). But v also peeks into this pair, so at the end of S_j the intervals for u and v will have the same endpoints, which will be red and not move between S_j and S_{r+1} . This contradicts the assumption that I(u) is strictly contained in I(v) at the start of S_{r+1} .

Thus u participates in the left part or base step of S_j . Since L(u) moves to the right, we must have $u = d_k$ for some k and there exists a_k participating in S_j . We will show $I(a_k) \subset I(v)$ at the start of S_i and that this is a contradiction.

After S_j , we have $R(a_k) = R(u) < M$ because u is not adjacent to \hat{a} after S_i and therefore after any sweep, by the induction hypothesis (4). Before S_j , the endpoints of $I(a_k)$ are white and are in their initial positions. Thus before S_i we have $R(a_k) < M$, and $M \le R(v)$ since R(v) can only move to the left during S_i . Also, L(v) can only move to the right after S_i . Before S_j the endpoints $L(a_k), L(u)$ are in their initial positions, and after S_j they are equal and do not move afterward. Since L(u) < L(v) at the end of S_i and L(v) < L(u) at the beginning of S_{r+1} , at the start of S_i we must have $L(v) < L(a_k)$.

Thus $I(a_k) \subset I(v)$ at the start of S_i . But then a_k would have participated in S_i as a type **b** interval contained in I(v), and v would not have been a terminal **a**, a contradiction. This completes Case 2.

Case 3. Both endpoints of I(v) are white at the end of S_i .

Without loss of generality, we may assume R(u) turns red during S_i .

First, suppose both endpoints of I(u) turned red during S_i . Therefore, at the start of S_{r+1} , the interval I(v) crosses two zone lines that were established in S_i , and thus vertex v is adjacent to three vertices of type \mathbf{a} from S_i . By the induction hypothesis (4), the graph represented by the intervals at the beginning of sweep S_{r+1} is the original graph G, so v was initially adjacent to these vertices. Since we can choose to begin the algorithm with S_i as the first sweep, these three vertices were of type \mathbf{a} in the initial closed representation, which contradicts Lemma 16(5).

Therefore, R(u) turns red during S_i while L(u) remains white. By the induction hypothesis (2) and Remark 19, u is a terminal \mathbf{a} for the left part of S_i and after S_i , the right endpoint R(u) lies on the leftmost zone line M of S_i . Thus during S_i , we have $u = a_{k+1}$ for some $k \geq 0$, at least one of b_k , c_k exists, and u peeks into $a_k b_k$ ($a_k c_k$) from the left. At the end of S_i , the endpoints $L(a_k)$, R(u) both equal M, are red, and do not move between S_i and S_{r+1} . Since I(v) contains them at the beginning of S_{r+1} , at the end of S_i vertex v must be adjacent to both u and a_k and so I(v) must contain $L(a_k) = R(u)$. If $R(v) < L(b_k)$ ($R(v) < L(c_k)$) at the beginning of S_i , then v would peek into $a_k b_k$ ($a_k c_k$) during S_i and would have participated in S_i , a contradiction. Hence v is adjacent to any of b_k , c_k that exist. We also know that $L(v) \leq M$ at the end of S_i (and originally) since v is adjacent to u in G, and furthermore, if L(v) = M then I(v), $I(a_k)$ have the same left endpoint initially, contradicting Proposition 13. Thus L(v) < M initially.

If $L(v) \leq L(u)$ initially then $I(u) \subseteq I(v)$ before S_i and therefore initially. This implies the existence of a vertex x peeking into vu from the left initially. If b_k exists, then $v, a_k, x, u, b_k, a_{k-1}$ would induce the forbidden graph $K_{2,4}^*$ in G. If c_k exists, then $a_{k-1}, a_k, c_k, u, x, v$ would induce in G a forbidden graph from Family 4. (In both cases, if k = 0 replace a_{k-1} by a'_1 .) Each of these cases leads to a contradiction.

Thus we are left with the instance L(u) < L(v) initially. Since $I(u) \subseteq I(v)$ at the start of S_{r+1} , one or both of L(u), L(v) must move between the end of S_i and the beginning of S_{r+1} and by the induction hypothesis, each endpoint can move (and turn red) at most once. The endpoints L(u) and L(v) must participate in different sweeps for I(u) to be strictly contained in I(v) at the start of S_{r+1} .

First consider the case in which L(u) participates before L(v), that is, L(u) participates in a sweep S_p with i and <math>L(v) remains white at the end of S_p . Then u is a terminal or merging a for the right part of S_p , and thus $u = a'_{j+1}$ for some j > 0. Thus there exist a'_j , a zone line M', and at least one of b'_j , d'_j in S_p with $R(a'_j) = L(u) = M'$ at the end of S_p . If $M' \ge L(v)$ then v would peek into $a'_j b'_j$ (or $a'_j d'_j$) and would have participated in S_p . Hence M' < L(v) at the end of S_p and we have $R(a'_j) < L(v)$ and hence v is not adjacent to a'_j in G. Between the end of S_p and the beginning of S_{r+1} , the left endpoint of v must move so that $L(v) \le L(u) = R(a'_j)$, and this means v will be adjacent to a'_j at the beginning of S_{r+1} , contradicting the induction hypothesis (4).

Next, consider the case in which L(v) participates before L(u), that is, L(v) participates in a sweep S_q with i < q < r + 1, and L(u) remains white at the end of S_q . Suppose that after S_q we have $L(v) \le L(u)$. During S_q , there exists some \hat{a} of type **a** participating in S_q for which, after S_q , interval I(v) has the same

endpoints as $I(\hat{a})$. We know \hat{a} is adjacent to b_k (c_k) because v is adjacent to b_k (c_k) and $R(\hat{a})$ is closed. Thus $R(\hat{a}) > R(u)$ even initially. Intervals of type \mathbf{a} are never expanded, so initially, $I(u) \subseteq I(\hat{a})$ and there exists a vertex x that peeks into $\hat{a}u$ initially from the left. If b_k exists then there exists a vertex y that peeks into a_kb_k from the right and the vertices $a_k, \hat{a}, y, u, b_k, x$ induce in G a $K_{2,4}^*$, a contradiction. Otherwise, c_k exists and from sweep S_i we get a forbidden graph from Family 4 with tail induced by $a_{k-1}, a_k, c_k, u, x, \hat{a}$, a contradiction.

Therefore, L(v) turns red before L(u) in sweep S_q but L(u) < L(v) after S_q and in a subsequent sweep S_p , where i < q < p < r+1, endpoint L(u) moves to the right. Then $u = a'_j$ for some j and is a merging or terminal ${\bf a}$ for the right part of S_p . Thus a'_{j-1} exists, one of b'_{j-1}, d'_{j-1} exists in S_p , and u peeks into $a'_{j-1}b'_{j-1}$ ($a'_{j-1}d'_{j-1}$) from the right. Then L(u) is retracted to $R(a'_{j-1})$ and v must be adjacent to a'_{j-1} , because after S_p we have $L(u) = R(a'_{j-1}) \in I(v)$. So v peeks into $a'_{j-1}b'_{j-1}$ ($a'_{j-1}d'_{j-1}$) during S_p and L(v) would have participated in S_p . But L(v) is red at the beginning of S_p , contradicting the induction hypothesis (2).

This completes Case 3 and the proof of induction hypothesis (1a).

Proof of (1b). We prove the first statement; the second is analogous. For a contradiction, suppose R(x) is red at the start of sweep S_{r+1} . Then it turned red during an earlier sweep S_i , and by the construction in the algorithm, there exists a zone line M at R(x) that was established during S_i .

There is a vertex y of type **a** that participates in S_i and has L(y) red and equal to M. Indeed, by induction hypothesis (2), L(y) does not move between the end of S_i and the beginning of S_{r+1} . So L(v) < L(y) < L(u). If R(y) < R(v) then I(y) is strictly contained in I(v), while if $R(y) \ge R(v)$ then I(u) is strictly contained in I(y). Both possibilities contradict induction hypothesis (1a).

Proof of (2). For sweep S_{r+1} we verify that the quantities defined in Definition 15 and the operations specified in Tables 1 and 2 are well-defined. In addition, we verify that all participating endpoints are white at the beginning of S_{r+1} .

Steps in Table 1: We identify an ab-pair a_0b_0 in [0.1]. In [0.2] we identify c_0 and d_0 if they exist; at most one of each can exist since G is twin-free, and by induction hypothesis (4) the graph represented is G. If c_0 or d_0 participates in S_{r+1} , then by the construction in the algorithm its participating endpoints are white at the beginning of S_{r+1} .

We next show there exists a vertex x peeking into a_0b_0 from the left as needed in [0.3]. By induction hypothesis (1a), all four endpoints of $I(a_0)$, $I(b_0)$ are white and by Remark 19(a), these intervals are in their initial positions. Thus by Hypothesis 11, there exists an x that initially peeked into a_0b_0 from the left, so x is adjacent to a_0 but not b_0 in G. By induction hypothesis (4), these adjacencies haven't changed so x must peek into a_0b_0 at the start of sweep S_{r+1} . If x peeks into a_0b_0 from the right then I(x) has been moved by the algorithm and its endpoints are red at the beginning of S_i , contradicting induction hypothesis (1b). Thus x peeks into a_0b_0 from the left at the start of S_{r+1} and, by induction hypothesis (1b), R(x) is white. There are at most two such vertices, for otherwise the forbidden graph B would be induced in G, a contradiction. If there are two such vertices, their right endpoints are in their initial positions by Remark 19(a) and hence unequal by Hypothesis 11. Thus a_1 and c_1 (if it exists) are well-defined and $R(a_1) < R(c_1)$.

We show that if both a_1 and c_1 exist in [0.3] then $L(a_1) < L(c_1)$ as noted in Table 1. For a contradiction, assume $L(c_1) \le L(a_1)$ thus $I(a_1)$ is strictly contained in $I(c_1)$. By induction hypothesis (1a) all four of these endpoints are white thus by Remark 19(a), $I(a_1)$ and $I(c_1)$ are in their initial positions. Now Lemma 16(4) applies to these intervals and we get a contradiction. The arguments for a'_1 and a'_1 are similar.

If there exists a vertex u for which I(u) is strictly contained in $I(a_1)$, then all four of these endpoints are white by induction hypothesis (1a) and are in their initial positions by Remark 19(a), so Proposition 13(1) implies that there is at most one such I(u). Hence b_1 , and similarly b'_1 , is well-defined in [0.4]. (If $L(a_1)$ is red at the beginning of S_{r+1} then a_1 is a terminal \mathbf{a} or a merging \mathbf{a} for S_{r+1} and $L(a_1)$ does not participate in S_{r+1} .)

It remains to prove that $L(c_1)$ is white at the start of S_{r+1} . Suppose c_1 exists and $L(c_1)$ is red. Since $R(c_1)$ is white, Remark 19(b) implies that c_1 was a terminal **a** for the right part of an earlier sweep S_j beginning with an inclusion $a'_0b'_0$. Then for some $n \geq 0$, c_1 is a'_{n+1} in S_j . So at the end of S_j there exist intervals $I(a'_n)$ and either $I(d'_n)$ or $I(b'_n)$ with right endpoints equal to $L(a'_{n+1})$, where $I(a'_n)$ is closed on the right and the other is open on the right. If n = 0, we interpret a'_{-1} to be a vertex that peeks in to $a'_0b'_0$ from the left. If b'_n exists then $a_0, a_1, c_1, b'_n, a'_{n-1}, a'_n$ induce in G the tail of a graph in Family 4. Thus n > 0 and d'_n exists, and then the two sweeps meeting at a_1, c_1, a'_n, d'_n induce a graph in Family 5. Again we have a contradiction, and thus $L(c_1)$ is also white at the start of S_{r+1} .

Steps in Table 2:

Now assume that at the beginning of S_{r+1} , all quantities up through Step [k.1] are well-defined and all participating endpoints were white. No new quantities are defined in step [k.1]. If the sweep continues to step [k.2], we establish a zone line $M_k = L(a_k)$ and identify d_k if it exists. There can be only one such vertex d_k since G is twin-free and the graph represented by the intervals is G by induction hypothesis (4). By the construction in the algorithm, if d_k participates, its endpoints are white at the beginning of S_{r+1} .

Next we show that a_{k+1} exists, as required in step [k.3]. If b_k exists, then the argument we used to show a_1 existed in step [0.3] also applies and as before, $R(a_{k+1})$ is white at the beginning of S_{r+1} . If b_k does not exist and we have reached step [k.3] then, because a_k and c_k are not twins, Lemma 16(6) implies that there exists a vertex x that peeks into $a_k c_k$ from the left. There are at most two such vertices, for otherwise a forbidden graph from Family 1 would be induced in G, a contradiction. One such vertex x is a_{k+1} and the other, if it exists, is c_{k+1} .

We will next show R(x) is white. For a contradiction, suppose R(x) is red at the start of sweep S_{r+1} . Then it turned red during an earlier sweep S_j and by the construction in the algorithm, there exists a zone line M at R(x) that was established during S_j . Induction hypothesis (3b), implies that there exists a vertex \hat{a} with $L(\hat{a})$ red and equal to M. Thus $L(a_k) \leq L(\hat{a}) < L(c_k)$ and in fact, by the induction hypothesis (3a), $L(a_k) < L(\hat{a})$ because $L(a_k)$ is white, since a_k is not a merging a. By induction hypothesis (1a) we must have $R(a_k) < R(\hat{a}) < R(c_k)$. By the induction hypothesis (4), the graph at the beginning of sweep S_{r+1} is the original graph G. If $k \geq 2$ and c_{k-1} exists, the vertices $a_{k-2}, a_{k-1}, c_{k-1}, a_k, c_k, \hat{a}$ induce in G the tail of a forbidden graph in Family 1. Thus either k = 1 or c_{k-1} does not exist. In both cases, b_{k-1} exists, there is a vertex z that peeks into $a_{k-1}b_{k-1}$ from the right, and $a_{k-1}, a_k, c_k, \hat{a}, b_{k-1}, z$ induce the forbidden graph B, a contradiction. Thus R(x) is white, i.e., $R(a_{k+1})$ and $R(c_{k+1})$ (if it exists) are white.

The remaining arguments used in showing a_1, b_1, c_1 are well-defined and in justifying the steps of [0.3] can be applied to a_{k+1}, b_{k+1} and c_{k+1} and to the steps of [k.3] as well. By Lemma 16(3), and the induction hypothesis (4), any vertex that peeks into $a_k c_k$ from the left also peeks into $a_k b_k$ from the left. If b_k exists, then the same arguments we used to show the endpoints of a_1 and c_1 are white also apply to a_{k+1} and c_{k+1} . So assume b_k does not exist. If a_k is a terminal \mathbf{a} or a merging \mathbf{a} for the left part of S_{r+1} , there is nothing more to prove.

So we may assume c_k and a_{k+1} exist and possibly also c_{k+1} . We must prove that $L(a_{k+1})$ and $L(c_{k+1})$ are also white at the start of S_{r+1} . If b_{k+1} exists, its endpoints are white at the start of S_{r+1} by (1a). If $L(a_{k+1})$ is red at the beginning of S_{r+1} then a_{k+1} is a merging \mathbf{a} or a terminal \mathbf{a} for S_{r+1} and $L(a_{k+1})$ does not participate in S_{r+1} , so there is nothing to prove. If c_{k+1} exists then $L(c_{k+1})$ is white by the same argument used to show $L(c_1)$ is white (here, a_1, c_1, a_0 are replaced by a_{k+1}, c_{k+1}, a_k). If d_{k+1} exists and participates in S_{r+1} then its endpoints are white at the beginning of S_{r+1} . This proves (2) for the left part of S_{r+1} , and the right part is analogous.

Proof of (3). Consider the current sweep S_{r+1} .

(a) If M was established during S_j where $1 \leq j < r + 1$, then (3a) holds at the beginning of S_{r+1} by the induction hypothesis, and by part (2) these red endpoints on M are not moved during S_{r+1} . Otherwise, M was established (without loss of generality) during the left part of sweep S_{r+1} . Let a_k be the vertex of

type **a** participating in S_{r+1} with $L(a_k) = M$. Since left endpoints of vertices of type **a** do not move during left parts of sweeps, $L(a_k) = M$ at the beginning of S_{r+1} and hence by the induction hypothesis, $L(a_k)$ was white at the beginning of S_{r+1} and in its initial position. If there exists another vertex with a white endpoint at M after S_{r+1} , then that endpoint is also in its initial position and initially shared an endpoint with a_k , contradicting Hypothesis 11.

- (b) If M was established during S_j where $1 \leq j < r + 1$, then (3b) holds at the beginning of S_{r+1} by the induction hypothesis, and by part (2) these red endpoints on M are not moved during S_{r+1} . If M was established during S_{r+1} then such an a, \hat{a} exist by the construction of the algorithm.
 - (c) and (d) These follow directly from (b) and the construction in the algorithm.
- (e) For each M established during S_j where $1 \leq j < r+1$, (3e) holds at the beginning of S_{r+1} by the induction hypothesis. By part (2), the red endpoints of these participating intervals are not moved during S_{r+1} . If the left endpoint of an interval is moved to M during S_{r+1} then it is a merging \mathbf{c} , for otherwise an interval of type \mathbf{a} would have a white left endpoint on M at the beginning of S_{r+1} , contradicting (3a). A similar result holds if the right endpoint of an interval is moved to M during S_{r+1} . This completes the proof of (3).

Before we can present the proof of (4) we need several technical lemmas. The algorithm allows sweeps to be done in any order and this affects the sweep in which an interval will participate. A vertex that peeks into an ab-pair from the right could be of type \mathbf{d} either as d'_k in the right part of some sweep or as d_k in the left part of a different sweep, depending on which is done first. Likewise, when a sweep S merges with an earlier sweep S', some intervals that would have participated in S had it been performed earlier have instead participated in S'. Lemmas 21 and 22 consider these possibilities and ensure that intervals can be moved as required by the algorithm without changing the graph represented.

Lemma 21 Suppose $a_{k+1}b_{k+1}$ is an ab-pair in the left part of sweep S_{r+1} . If x peeks into $a_{k+1}b_{k+1}$ from the right and $x \neq a_k$, then $x = d_k$. An analogous result holds for ab-pairs in the right part of S_{r+1} .

Proof. For a contradiction, suppose $x \neq d_k$. Setting $x_k = x$, we will show there exist vertices $x_k, x_{k-1}, \ldots, x_0$ such that the following are satisfied before and after S_{r+1} , for each $j = k, k - 1, \ldots, 0$:

- (a) $I(x_j)$ lies completely to the right of $I(x_{j+1})$.
- (b) x_i is not identified as a vertex of type $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ in the left part of S_{r+1} .
- (c) $I(x_j)$ crosses the zone line $M_j = L(a_j)$ established during S_{r+1} , so x_j is adjacent to a_j and a_{j+1} .
- (d) Every vertex that is adjacent to x_j is adjacent to a_j .

At the beginning of S_{r+1} , we first verify these conditions for j = k, where (a) is true vacuously. To establish (b), note that x_k is not equal to any of $a_{k+1}, b_{k+1}, c_{k+1}, d_{k+1}, b_k, c_k$ because $I(x_k)$ intersects $I(a_{k+1})$ but not $I(b_{k+1})$, and $x_k \neq a_k, d_k$ by assumption. If x_k were any other vertex participating in the left part of S_{r+1} , then it would violate Lemma 16(5). For the same reason, $R(x_k) < R(a_k)$. Then (c) follows because $I(x_k) \not\subseteq I(a_k)$, so $L(x_k) < L(a_k) = M_k$ and thus $I(x_k)$ crosses M_k .

To show (d) holds for x_k , suppose to the contrary that some vertex v is adjacent to x_k but not to a_k . Then I(v) must intersect $I(x_k)$ on the left and not intersect $I(a_k)$, so $R(v) < M_k$. Since $v \neq b_{k+1}$ and $I(v) \not\subseteq I(a_{k+1})$, we know $L(v) < L(a_{k+1})$. But then $I(b_{k+1})$ is contained in both $I(a_{k+1})$ and I(v). By induction hypothesis (1a), all these endpoints are white and by Remark 19(a) are in their initial positions, so this contradicts Proposition 13. Thus x_k satisfies (a)-(d).

Now suppose $x_k, x_{k-1}, \ldots, x_j$ exist and satisfy (a)-(d) for some $j, 1 \le j \le k$. Since (b) implies $x_j \ne d_j$, it follows from Definition 15 and (d) that there exists a vertex x_{j-1} , different from a_{j-1} and d_{j-1} , that is adjacent to a_j but not x_j . We will show (a)-(d) hold for x_{j-1} .

Since $I(x_j)$ crosses M_j , we have $L(x_j) < L(a_j)$ and so $I(x_{j-1})$ intersects $I(a_j)$ on the right and is completely to the right of $I(x_j)$. This proves (a).

Next we show (b). We know $x_{j-1} \neq a_j, d_j$ because a_j and d_j are adjacent to x_j and x_{j-1} is not. If $x_{j-1} = b_j$ then x_j would peek in to a_jb_j from the left and violate (b) in case j, and the same reasoning shows $x_{j-1} \neq c_j$. We know $x_{j-1} \neq a_{j-1}, d_{j-1}$ by assumption and $x_{j-1} \neq b_{j-1}, c_{j-1}$ because x_{j-1} is adjacent to a_j . If x_{j-1} were any other participating vertex it would violate Lemma 16(5).

To establish (c), suppose $I(x_{j-1})$ does not cross M_{j-1} . Then either $x_{j-1} = b_{j-1}$, which we have just shown is false, or $R(x_{j-1}) > R(a_{j-1})$, violating Lemma 16(5).

Next, we establish (d). Suppose there exists a vertex v that is adjacent to x_{j-1} but not to a_{j-1} . First suppose I(v) does not intersect $I(x_j)$. Then we get a forbidden graph in Family 3 starting at $a_{k+1}b_{k+1}$, sweeping rightward, with tail induced by $a_{j+1}, a_j, x_j, a_{j-1}, v$, a contradiction. Next suppose that v is adjacent to x_j , but I(v) is contained in $I(a_j)$. In this case, we get a forbidden graph in Family 2 starting at $a_{k+1}b_{k+1}$, sweeping rightward, with tail induced by $a_{j+1}, a_j, x_j, a_{j-1}, x_{j-1}, v$, a contradiction. Next suppose $L(v) < M_j$ but that v is not adjacent to x_{j+1} . Then we get a forbidden graph in Family 1 starting at $a_{k+1}b_{k+1}$, sweeping rightward, with tail induced by $a_{j+2}, a_{j+1}, x_{j+1}, a_j, x_j, v$, which gives a contradiction. Finally, suppose v is adjacent to x_{j+1} . Then we get a forbidden graph in Family 4 starting at $a_{k+1}b_{k+1}$, sweeping rightward, with tail induced by $a_{j+2}, a_{j+1}, x_{j+1}, x_j, x_{j-1}, v$, a contradiction.

Applying this construction when j=1 gives a vertex x_0 satisfying (a)-(d). In particular, every vertex adjacent to x_0 is adjacent to a_0 . We know x_0 is adjacent to b_0 , for otherwise x_0 would peek into a_0b_0 and be identified as a participating vertex, contradicting (b). Since $x_0 \neq d_0$, there exists a vertex y that is adjacent to a_0 but not to x_0 and by Definition 15, y must be adjacent to b_0 . Note $I(y) \not\subseteq I(a_0)$ by induction hypothesis (1a), Remark 19(a), and Proposition 13 (parts (1) and (2)). Now we get a forbidden graph from Family 2, sweeping rightward, with tail induced by $a_1, a_0, x_0, a'_1, y, b_0$.

Thus x_0 leads to a contradiction and we see that $x = x_k = d_k$. \square

Lemma 22 Let S_i be a sweep starting at $\hat{a_0}\hat{b_0}$ whose right part has a terminal \mathbf{a} at \hat{a}'_n . For j > i let S_j be a sweep starting at a_0b_0 whose left part has a merging \mathbf{a} at a_k , and suppose $a_k = \hat{a}'_n$. If S_j were performed before S_i , it would terminate at a_{k+m} for some $m \geq 0$ and for all of the following that exist, $a_{k+\ell} = \hat{a}'_{n-\ell}$, $b_{k+\ell} = \hat{b}'_{n-\ell}$, $c_{k+\ell} = \hat{c}'_{n-\ell}$. The analogous result holds if S_i is a left sweep and S_j is a right sweep.

Proof. One can check that $a_{k+\ell}$ of S_j would be $\hat{a}'_{n-\ell}$ of S_i and it follows directly that $b_{k+\ell} = \hat{b}'_{n-\ell}$. When $\ell = n$ we write \hat{a}_0 instead of \hat{a}'_0 , etc. Now consider $c_{k+\ell}$ from S_j . By Lemma 16(6), no interval can intersect $I(c_{k+\ell})$ without also intersecting $I(a_{k+\ell})$. Let p be maximum so that $c_{k+p} \neq \hat{c}'_{n-p}$. If p = n then $c_{k+n} \neq \hat{c}_0$ and by Definition 15, there exists some v adjacent to $\hat{a}_0 = a_{k+n}$ but not to c_{k+n} . We know $\hat{b}_0 = b_{k+n}$ is adjacent to c_{k+n} by Lemma 16(3), so $v \neq \hat{b}_0$. Furthermore, v does not peek into $\hat{a}_0\hat{b}_0$ from the left by the definition of \hat{c}_0 . Thus I(v) must intersect $I(\hat{b}_0) = I(b_{k+n})$. This contradicts Lemma 16(3). Thus p < n, and by definition of \hat{c}'_{n-p} , there exists a vertex v other than $\hat{a}'_{n-p-1} = a_{k+p+1}$ and $\hat{c}'_{n-p-1} = c_{k+p+1}$, that meets a_{k+p} but not c_{k+p} . But then the three vertices a_{k+p+1}, c_{k+p+1}, v peek into $a_{k+p}c_{k+p}$ from the left, inducing a forbidden graph from Family 1 in G, a contradiction. \square

Definition 23 A vertex d_k identified as a type **d** vertex in the left part of sweep S is called an NTM-d (needs to move) if either (i) b_{k+1} in exists in S and d_k peeks into $a_{k+1}b_{k+1}$ from the right or (ii) d_{k+1} exists and is an NTM-d. Analogously, we define NTM-c vertices for the right part of S.

Remark 24 For any vertex d_k which is an NTM-d for sweep S, there exists an ab-pair a_nb_n for some $n \ge k+1$ so that for each j with $k \le j \le n-1$, vertex d_j is an NTM-d for S and d_j peeks into $a_{j+1}d_{j+1}$. An analogous statement holds for NTM-c vertices.

Lemma 25 If d is an NTM-d vertex in sweep S_{r+1} then the endpoints of I(d) are white at the beginning of S_{r+1} . The analogous result is true for NTM-c vertices.

Proof. For a contradiction, let k be the maximum index for which d_k is an NTM-d vertex for S_{r+1} and $I(d_k)$ has a red endpoint at the start of S_{r+1} . Suppose $L(d_k)$ is red, so that it turned red during a sweep S_i for some $i \leq r$ and there exists a zone line M of S_i with $M = L(d_k)$. (Note that d_k may not have been a type \mathbf{d} vertex for S_i .)

The induction hypothesis for Theorem 20(3b) implies that there exist type **a** vertices a, \hat{a} that participate in S_i and have $R(a) = L(\hat{a}) = M$. If $L(d_k)$ is closed at the start of S_{r+1} then a is adjacent to d_k but not to a_k , contradicting Definition 15. Thus $L(d_k)$ is open. If b_{k+1} exists then d_k peeks into $a_{k+1}b_{k+1}$ from the right, contradicting induction hypothesis (1b). Thus by Definition 23, d_{k+1} exists and by the maximality of k, we know $R(d_{k+1})$ is white. By induction hypothesis (3a), zone line M lies strictly to the right of $I(d_{k+1})$. But this induces a forbidden graph from Family 1 starting at a_nb_n (specified in Remark 24) and sweeping rightward with tail $a_{k+2}, a_{k+1}, d_{k+1}, a_k, d_k, \hat{a}$, a contradiction.

Therefore, $L(d_k)$ is white and $R(d_k)$ is red at the start of S_{r+1} and we may assume that $R(d_k)$ turned red during some earlier sweep S_i , and lies on a zone line of S_i . Since d_k was a terminal \mathbf{a} for S_i , we know $R(d_k)$ is closed at the start of S_{r+1} . By the induction hypothesis (3), there exists \hat{a}_ℓ and either \hat{b}_ℓ or \hat{c}_ℓ participating in S_i with $L(\hat{a}_\ell) = L(\hat{b}_\ell) = L(\hat{c}_\ell)$. Since d_k is an NTM-d, we know there exists $n \geq 0$ for which $a_n b_n$ is an ab-pair and d_j exists and is an NTM-d for $k \leq j \leq n-1$. If \hat{c}_ℓ exists, we get a forbidden graph from Family 5 starting at $a_n b_n$ and sweeping rightward and meeting the left part of S_i at $a_k, d_k, \hat{a}_\ell, \hat{c}_\ell$. If \hat{b}_ℓ exists, we get a forbidden graph from Family 4 starting at $a_n b_n$ and sweeping rightward, with tail induced by vertices $a_{k+1}, a_k, d_k, \hat{b}_\ell, \hat{a}_{\ell-1}, \hat{a}_\ell$, a contradiction. \square

Now we can present the proof of Theorem 20(4).

Proof of (4). Consider any two vertices w, z of G. Our goal is to show that the intervals assigned to z and w intersect prior to the current sweep S_{r+1} if and only if they intersect after S_{r+1} . This is certainly true if neither w nor z participates in S_{r+1} , and it is true by the construction in the algorithm if both w and z participate, so without loss of generality, we may assume that w participates in the left part of S_{r+1} and z does not participate in this sweep.

We consider cases depending on the role w plays in S_{r+1} : it is either a_k, c_k, b_k , or d_k for some $k \geq 0$. In each case we assume for a contradiction that the intervals for z and w intersect at the start of S_{r+1} but not at the end, or vice versa. We consider $k \geq 1$; the arguments for k = 0 are analogous. Let M be the zone line $L(a_{k-1}) = R(a_k)$ at the end of S_{r+1} .

First, suppose $w = a_k$, so $L(a_k)$ is unchanged in S_{r+1} and $R(a_k)$ is retracted to the left to M. We need only consider I(z) intersecting $I(a_k)$ on the right at the start of S_{r+1} and not intersecting afterwards. Thus at the start of S_{r+1} we have $M = L(a_{k-1}) < L(z) \le R(a_k)$. If $R(z) \le R(a_{k-1})$ at the start of S_{r+1} then $I(z) \subseteq I(a_{k-1})$ and z would participate in S_{r+1} as b_{k-1} , a contradiction. Thus $R(z) > R(a_{k-1})$ and z is adjacent to a_k, a_{k-1} and a_{k-2} , contradicting Lemma 16(5) (where a_{k-2} is interpreted as a'_1 if k = 1).

Second, suppose $w = c_k$, so $L(c_k)$ and $R(c_k)$ are moved to the left. If I(z) intersects $I(c_k)$ before S_{r+1} but not after, then I(z) must intersect $I(c_k)$ on the right at the beginning of S_{r+1} . By Lemma 16(6), I(z) also intersects $I(a_k)$ before S_{r+1} but not after, contradicting the previous case. Thus I(z) does not intersect $I(c_k)$ before S_{r+1} but does intersect it afterwards, so before S_{r+1} we have that $L(a_k) < R(z) < L(c_k)$ and z peeks into $a_k c_k$ from the left. If a_k is not a merging \mathbf{a} for S_{r+1} then z participates in S_{r+1} , a contradiction. Therefore, a_k is a merging \mathbf{a} for S_{r+1} , $L(a_k)$ turned red during the right part of an earlier sweep S_i , $i \le r$, beginning at some $\hat{a}_0\hat{b}_0$, and for some n, $a_k = \hat{a}'_n$ was a terminal \mathbf{a} for S_i . If we were to perform S_{r+1} after S_{i-1} and before S_i then, by Lemma 22 with j = r + 1, a_{k+1} and z would be distinct vertices peeking into $a_k c_k$ and so z would equal $c_{k+1} = \hat{c}'_{n-1}$. By reasoning as in Theorem 20(2), we see all endpoints participating in S_{r+1} , including those of intervals of the form $I(c_{k+\ell}) = I(\hat{c}'_{n-\ell})$, would be white at the beginning of S_{r+1} and thus were white at the end of S_{i-1} . So these endpoints were white and would have participated in S_i for the original order of the sweeps, immediately after S_{i-1} . In particular, z would be moved during S_i and we would have $R(z) = L(a_k)$ at the end of S_i and thus at the beginning of S_{r+1} , since red endpoints do not

move. This contradicts $L(a_k) < R(z)$.

Third, consider $w = b_k$. Since b_k is expanded on both sides during S_{r+1} , we need only consider I(z) intersecting $I(b_k)$ after S_{r+1} but not before. If I(z) lies to the left of $I(b_k)$ before S_{r+1} , then z peeks into a_kb_k and would have participated in S_{r+1} , a contradiction. Therefore, $R(b_k) < L(z) < M$. By Lemma 21, we know $z = d_{k-1}$. By Definition 23, we know that either all of $d_{k-1}, d_{k-2}, \ldots, d_0$ exist and are NTM-d's, or there exists an index m with 0 < m < k for which $d_{k-1}, d_{k-2}, \ldots, d_m$ exist and are all NTM-d's but d_{m-1} does not exist. Lemma 25 tells us that the endpoints of each of these NTM-d's are white at the beginning of S_{r+1} . In either case, in step [k.5] of Algorithm 17, these NTM-d's will be moved, including the interval for $z = d_{k-1}$, and thus z would have participated in in S_{r+1} , a contradiction.

Finally, consider $w=d_k$. In this case, $L(d_k)$ and $R(d_k)$ are moved to the right during S_{r+1} . If I(z) intersects $I(d_k)$ before S_{r+1} but not after then I(z) intersects $I(d_k)$ on the left before S_{r+1} . Thus I(z) intersects $I(d_k)$ but not $I(a_k)$, contradicting Definition 15. So I(z) intersects $I(d_k)$ after S_{r+1} but not before, and then at the beginning of S_{r+1} we know I(z) intersects $I(a_k)$ but not $I(d_k)$. By Definition 15, $z=a_{k-1}$ or $z=d_{k-1}$. But z does not participate in sweep S_{r+1} so $z=d_{k-1}$, and since $L(z) < M = L(a_{k-1})$ the algorithm would not redefine $I(d_k)$ in step [k.5]. Since $w=d_k$ participates in S_{r+1} , this is a contradiction. This completes the proof of (4) and of Theorem 20. \square

Finally, in Corollary 26 we use the results in Theorem 20 to complete the proof of Theorem 9, our main result.

Corollary 26 If G is a twin-free interval graph with no induced graph from the forbidden set \mathcal{F} then G is a strict mixed interval graph.

Proof. Using Proposition 12, fix a closed interval representation of G satisfying Hypothesis 11. Color all endpoints white and apply Algorithm 17 to this representation. Each sweep S_i of the algorithm starts with a strict inclusion and the endpoints of these two intervals are white by Theorem 20(1a). At the end of S_i these four endpoints (and others) have turned red. By Theorem 20(2), red endpoints never participate in sweeps, thus the algorithm must terminate when no strict inclusions remain. At this stage we have a strict mixed interval representation, and by Theorem 20(4) the graph represented is the original graph G. Thus G is a strict mixed interval graph. \Box

4.4 Complexity

Given a twin-free, \mathcal{F} -free graph G=(V,E) we can determine if G is an interval graph in O(|V|+|E|) time [2]. If G is an interval graph, by Proposition 12 we can obtain a representation of G satisfying Hypothesis 11. Now sort the endpoints of the intervals so they are listed in increasing order. Associate with each endpoint a data structure containing the name of the vertex to which it belongs, its color, whether it is a right or left endpoint and whether the endpoint is open or closed. Depending on the representation, this requires no more than $O(|V|\log|V|)$ time. Sweep through the list, enqueuing each vertex when its left endpoint is encountered and dequeuing the vertex when its right endpoint is encountered. Two intervals that are not dequeued in the same order as they are enqueued represent an ab-pair. Start the base step for the first sweep of Algorithm 17 with the first such pair found. It is straightforward to verify that the participants of this sweep can be identified and their endpoints modified according to Tables 1 and 2 in O(|V|) time. Since each sweep reduces the number of strict inclusions by at least one, there are at most O(|V|) sweeps and Algorithm 17 runs in $O(|V|^2)$ time.

References

[1] K.P. Bogart and D.B. West. A short proof that "proper = unit". Discrete Math, 201 (1999), 21–23.

- [2] K.S. Booth and S. Leuker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13 (1976), 335-379.
- [3] M. Dourado, V. Le, F. Protti, D. Rautenbach and J. Szwarcfiter. Mixed Unit Interval Graphs. *Discrete Math.*, 312 (2012), 3357–3363.
- [4] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
- [5] M.C. Golumbic and A.N. Trenk. Tolerance Graphs. Cambridge University Press, Cambridge, 2004.
- [6] F. Joos. A Characterization of Mixed Unit Interval Graphs. Preprint, 2013.
- [7] V. Le and D. Rautenbach. Integral Mixed Unit Interval Graphs. Discrete Applied Math., 161, 1028–1036 (2013)
- [8] D. Rautenbach and J.L. Szwarcfiter. Unit Interval Graphs of Open and Closed Intervals. Journal of Graph Theory, 72 (2013), 418–429.
- [9] F. Roberts. Indifference Graphs. *Proof Techniques in Graph Theory*, (F. Harary, Ed.) Academic Press (1969), 139–146.